Source: \core\math\Matrix.js
import Point from './Point';
/**
* The pixi Matrix class as an object, which makes it a lot faster,
* here is a representation of it :
* | a | b | tx|
* | c | d | ty|
* | 0 | 0 | 1 |
*
* @class
* @memberof PIXI
*/
export default class Matrix
{
/**
* @param {number} [a=1] - x scale
* @param {number} [b=0] - y skew
* @param {number} [c=0] - x skew
* @param {number} [d=1] - y scale
* @param {number} [tx=0] - x translation
* @param {number} [ty=0] - y translation
*/
constructor(a = 1, b = 0, c = 0, d = 1, tx = 0, ty = 0)
{
/**
* @member {number}
* @default 1
*/
this.a = a;
/**
* @member {number}
* @default 0
*/
this.b = b;
/**
* @member {number}
* @default 0
*/
this.c = c;
/**
* @member {number}
* @default 1
*/
this.d = d;
/**
* @member {number}
* @default 0
*/
this.tx = tx;
/**
* @member {number}
* @default 0
*/
this.ty = ty;
this.array = null;
}
/**
* Creates a Matrix object based on the given array. The Element to Matrix mapping order is as follows:
*
* a = array[0]
* b = array[1]
* c = array[3]
* d = array[4]
* tx = array[2]
* ty = array[5]
*
* @param {number[]} array - The array that the matrix will be populated from.
*/
fromArray(array)
{
this.a = array[0];
this.b = array[1];
this.c = array[3];
this.d = array[4];
this.tx = array[2];
this.ty = array[5];
}
/**
* sets the matrix properties
*
* @param {number} a - Matrix component
* @param {number} b - Matrix component
* @param {number} c - Matrix component
* @param {number} d - Matrix component
* @param {number} tx - Matrix component
* @param {number} ty - Matrix component
*
* @return {PIXI.Matrix} This matrix. Good for chaining method calls.
*/
set(a, b, c, d, tx, ty)
{
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.tx = tx;
this.ty = ty;
return this;
}
/**
* Creates an array from the current Matrix object.
*
* @param {boolean} transpose - Whether we need to transpose the matrix or not
* @param {Float32Array} [out=new Float32Array(9)] - If provided the array will be assigned to out
* @return {number[]} the newly created array which contains the matrix
*/
toArray(transpose, out)
{
if (!this.array)
{
this.array = new Float32Array(9);
}
const array = out || this.array;
if (transpose)
{
array[0] = this.a;
array[1] = this.b;
array[2] = 0;
array[3] = this.c;
array[4] = this.d;
array[5] = 0;
array[6] = this.tx;
array[7] = this.ty;
array[8] = 1;
}
else
{
array[0] = this.a;
array[1] = this.c;
array[2] = this.tx;
array[3] = this.b;
array[4] = this.d;
array[5] = this.ty;
array[6] = 0;
array[7] = 0;
array[8] = 1;
}
return array;
}
/**
* Get a new position with the current transformation applied.
* Can be used to go from a child's coordinate space to the world coordinate space. (e.g. rendering)
*
* @param {PIXI.Point} pos - The origin
* @param {PIXI.Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)
* @return {PIXI.Point} The new point, transformed through this matrix
*/
apply(pos, newPos)
{
newPos = newPos || new Point();
const x = pos.x;
const y = pos.y;
newPos.x = (this.a * x) + (this.c * y) + this.tx;
newPos.y = (this.b * x) + (this.d * y) + this.ty;
return newPos;
}
/**
* Get a new position with the inverse of the current transformation applied.
* Can be used to go from the world coordinate space to a child's coordinate space. (e.g. input)
*
* @param {PIXI.Point} pos - The origin
* @param {PIXI.Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)
* @return {PIXI.Point} The new point, inverse-transformed through this matrix
*/
applyInverse(pos, newPos)
{
newPos = newPos || new Point();
const id = 1 / ((this.a * this.d) + (this.c * -this.b));
const x = pos.x;
const y = pos.y;
newPos.x = (this.d * id * x) + (-this.c * id * y) + (((this.ty * this.c) - (this.tx * this.d)) * id);
newPos.y = (this.a * id * y) + (-this.b * id * x) + (((-this.ty * this.a) + (this.tx * this.b)) * id);
return newPos;
}
/**
* Translates the matrix on the x and y.
*
* @param {number} x How much to translate x by
* @param {number} y How much to translate y by
* @return {PIXI.Matrix} This matrix. Good for chaining method calls.
*/
translate(x, y)
{
this.tx += x;
this.ty += y;
return this;
}
/**
* Applies a scale transformation to the matrix.
*
* @param {number} x The amount to scale horizontally
* @param {number} y The amount to scale vertically
* @return {PIXI.Matrix} This matrix. Good for chaining method calls.
*/
scale(x, y)
{
this.a *= x;
this.d *= y;
this.c *= x;
this.b *= y;
this.tx *= x;
this.ty *= y;
return this;
}
/**
* Applies a rotation transformation to the matrix.
*
* @param {number} angle - The angle in radians.
* @return {PIXI.Matrix} This matrix. Good for chaining method calls.
*/
rotate(angle)
{
const cos = Math.cos(angle);
const sin = Math.sin(angle);
const a1 = this.a;
const c1 = this.c;
const tx1 = this.tx;
this.a = (a1 * cos) - (this.b * sin);
this.b = (a1 * sin) + (this.b * cos);
this.c = (c1 * cos) - (this.d * sin);
this.d = (c1 * sin) + (this.d * cos);
this.tx = (tx1 * cos) - (this.ty * sin);
this.ty = (tx1 * sin) + (this.ty * cos);
return this;
}
/**
* Appends the given Matrix to this Matrix.
*
* @param {PIXI.Matrix} matrix - The matrix to append.
* @return {PIXI.Matrix} This matrix. Good for chaining method calls.
*/
append(matrix)
{
const a1 = this.a;
const b1 = this.b;
const c1 = this.c;
const d1 = this.d;
this.a = (matrix.a * a1) + (matrix.b * c1);
this.b = (matrix.a * b1) + (matrix.b * d1);
this.c = (matrix.c * a1) + (matrix.d * c1);
this.d = (matrix.c * b1) + (matrix.d * d1);
this.tx = (matrix.tx * a1) + (matrix.ty * c1) + this.tx;
this.ty = (matrix.tx * b1) + (matrix.ty * d1) + this.ty;
return this;
}
/**
* Sets the matrix based on all the available properties
*
* @param {number} x - Position on the x axis
* @param {number} y - Position on the y axis
* @param {number} pivotX - Pivot on the x axis
* @param {number} pivotY - Pivot on the y axis
* @param {number} scaleX - Scale on the x axis
* @param {number} scaleY - Scale on the y axis
* @param {number} rotation - Rotation in radians
* @param {number} skewX - Skew on the x axis
* @param {number} skewY - Skew on the y axis
* @return {PIXI.Matrix} This matrix. Good for chaining method calls.
*/
setTransform(x, y, pivotX, pivotY, scaleX, scaleY, rotation, skewX, skewY)
{
const sr = Math.sin(rotation);
const cr = Math.cos(rotation);
const cy = Math.cos(skewY);
const sy = Math.sin(skewY);
const nsx = -Math.sin(skewX);
const cx = Math.cos(skewX);
const a = cr * scaleX;
const b = sr * scaleX;
const c = -sr * scaleY;
const d = cr * scaleY;
this.a = (cy * a) + (sy * c);
this.b = (cy * b) + (sy * d);
this.c = (nsx * a) + (cx * c);
this.d = (nsx * b) + (cx * d);
this.tx = x + ((pivotX * a) + (pivotY * c));
this.ty = y + ((pivotX * b) + (pivotY * d));
return this;
}
/**
* Prepends the given Matrix to this Matrix.
*
* @param {PIXI.Matrix} matrix - The matrix to prepend
* @return {PIXI.Matrix} This matrix. Good for chaining method calls.
*/
prepend(matrix)
{
const tx1 = this.tx;
if (matrix.a !== 1 || matrix.b !== 0 || matrix.c !== 0 || matrix.d !== 1)
{
const a1 = this.a;
const c1 = this.c;
this.a = (a1 * matrix.a) + (this.b * matrix.c);
this.b = (a1 * matrix.b) + (this.b * matrix.d);
this.c = (c1 * matrix.a) + (this.d * matrix.c);
this.d = (c1 * matrix.b) + (this.d * matrix.d);
}
this.tx = (tx1 * matrix.a) + (this.ty * matrix.c) + matrix.tx;
this.ty = (tx1 * matrix.b) + (this.ty * matrix.d) + matrix.ty;
return this;
}
/**
* Decomposes the matrix (x, y, scaleX, scaleY, and rotation) and sets the properties on to a transform.
*
* @param {PIXI.Transform|PIXI.TransformStatic} transform - The transform to apply the properties to.
* @return {PIXI.Transform|PIXI.TransformStatic} The transform with the newly applied properties
*/
decompose(transform)
{
// sort out rotation / skew..
const a = this.a;
const b = this.b;
const c = this.c;
const d = this.d;
const skewX = -Math.atan2(-c, d);
const skewY = Math.atan2(b, a);
const delta = Math.abs(skewX + skewY);
if (delta < 0.00001)
{
transform.rotation = skewY;
if (a < 0 && d >= 0)
{
transform.rotation += (transform.rotation <= 0) ? Math.PI : -Math.PI;
}
transform.skew.x = transform.skew.y = 0;
}
else
{
transform.skew.x = skewX;
transform.skew.y = skewY;
}
// next set scale
transform.scale.x = Math.sqrt((a * a) + (b * b));
transform.scale.y = Math.sqrt((c * c) + (d * d));
// next set position
transform.position.x = this.tx;
transform.position.y = this.ty;
return transform;
}
/**
* Inverts this matrix
*
* @return {PIXI.Matrix} This matrix. Good for chaining method calls.
*/
invert()
{
const a1 = this.a;
const b1 = this.b;
const c1 = this.c;
const d1 = this.d;
const tx1 = this.tx;
const n = (a1 * d1) - (b1 * c1);
this.a = d1 / n;
this.b = -b1 / n;
this.c = -c1 / n;
this.d = a1 / n;
this.tx = ((c1 * this.ty) - (d1 * tx1)) / n;
this.ty = -((a1 * this.ty) - (b1 * tx1)) / n;
return this;
}
/**
* Resets this Matix to an identity (default) matrix.
*
* @return {PIXI.Matrix} This matrix. Good for chaining method calls.
*/
identity()
{
this.a = 1;
this.b = 0;
this.c = 0;
this.d = 1;
this.tx = 0;
this.ty = 0;
return this;
}
/**
* Creates a new Matrix object with the same values as this one.
*
* @return {PIXI.Matrix} A copy of this matrix. Good for chaining method calls.
*/
clone()
{
const matrix = new Matrix();
matrix.a = this.a;
matrix.b = this.b;
matrix.c = this.c;
matrix.d = this.d;
matrix.tx = this.tx;
matrix.ty = this.ty;
return matrix;
}
/**
* Changes the values of the given matrix to be the same as the ones in this matrix
*
* @param {PIXI.Matrix} matrix - The matrix to copy from.
* @return {PIXI.Matrix} The matrix given in parameter with its values updated.
*/
copy(matrix)
{
matrix.a = this.a;
matrix.b = this.b;
matrix.c = this.c;
matrix.d = this.d;
matrix.tx = this.tx;
matrix.ty = this.ty;
return matrix;
}
/**
* A default (identity) matrix
*
* @static
* @const
*/
static get IDENTITY()
{
return new Matrix();
}
/**
* A temp matrix
*
* @static
* @const
*/
static get TEMP_MATRIX()
{
return new Matrix();
}
}